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We describe a framework for quantum field theory that is based on quantized 
binary alternatives. We discuss the relation of the dynamics of quantum fields 
and the time evolution of the Heisenberg operators defined by the creation and 
annihilation operators of the alternatives. An explicit expression for the vacuum 
vector of the quantum fields is derived. Finally we discuss eigenstates of the 
momentum operators. 

1. INTRODUCTION 

In this paper we distinguish terminologically between abstract and 
concrete quantum theory. Abstract quantum theory is the theory of finite- 
or separably infinite-dimensional Hilbert space in which self-adjoint opera- 
tors are called observables, and the metric defines probabilities for the pre- 
diction of measurement results. Concrete quantum theory offers the usual 
physical semantics to the observables under the three given concepts of 
position space, particles, and fields. From the outset we use these concepts 
in the frame of special relativity. 

Historically the three guiding concepts belonged already to classical 
physics before quantum theory was discovered, and special relativity was 
formulated 20 years earlier than the mathematical frame of quantum mech- 
anics. What we discuss is a logical inversion of this historical sequence. We 
maintain: Abstract quantum theory is sufficient for mathematically deducing 
the three-dimensional real position space, connected with time by the Poin- 
car6 group, as natural frame for expressing all possible versions of quantum 
theory. This follows from the fact that every Hilbert space can be described 
within the tensor product of two-dimensional complex metrical spaces V2. 
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The symmetry group of the two-dimensional complex space U(2) and com- 
plex conjugation is sufficient for defining the symmetry of a real three- 
dimensional space, connected with a fourth (time) coordinate in the relativis- 
tic manner. A basis in such a V2 can be defined by an operator with two 
eigenvalues. Logically, such an operator is just a binary alternative. In our 
physical use we call it, as an observable, an "ur" (from German Ur-Alterna- 
tive = original alternative). The ur is just a bit of information. Abstract 
quantum theory thus is a theory on information, and the deduction of 
concrete quantum theory thus reduces "matter" to "information." But this 
philosophical remark is not the present topic. We study mathematical meth- 
ods for deducing quantum field theory in detail from the ur theory. 

What we later on called the "ur hypothesis" was introduced by v. 
Weis5cker (1955) and explicitly by Scheibe et  al. (1958). Finkelstein (1969) 
independently developed an analogous theory on the same group-theoretic 
foundation under the title of "space-time-code." The mathematical frame 
which we use now was introduced by Castell (1975). It is described in v. 
Weis/icker (1985), Chapters 8-10. Abstract quantum theory is reconstructed 
from simple postulates by Drieschner et  al. (1988). Now we are adding to 
this reconstruction its consequences in ur theory. 

That abstract quantum theory can always be described in the tensor 
product of binary spaces is mathematically trivial. This statement must, 
however, be explained in three steps, of which only the two first are evidently 
trivial. 

It is logically trivial that any n-fold logical alternative (n is a natural 
number or the set of natural numbers) can be decided by successively decid- 
ing a finite or infinite series of twofold ("binary") alternatives, i.e., yes-no 
decisions. 

It can easily be mathematically proved that, as said before, any finite- 
dimensional or separable Hilbert space can be embedded into the tensor 
product of two-dimensional spaces. 

At first sight it does not, however, seem evident that also any time 
dependence of the vectors in a Hilbert space can be derived from the time 
dependence of two-dimensional vectors, at least in a manner that would be 
describable by a meaningful Hamiltonian. In our early publications we off- 
ered this indeed only as a mathematical supposition. Yet now we propose 
the following argument. 

In the Hamilton-Jacobi theory of classical mechanics, for any given 
Hamiltonian as a function of position and momentum, there exists always 
a canonical transformation into action and angle variables, i.e., into an 
inertial path. This transformation will indeed in general change the topology 
at large; else, e.g., a closed orbit could not be projected onto a straight line. 
If we accept this topological consequence, we will be able to transform any 
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given dynamical law into any other. For the empirical interpretation we then 
select the form of the law whose topology at large agrees with our spatial 
intuition; then only the transformations of the Galilei group remain as 
permissible. 

We can do a corresponding thing in quantum theory, including the 
definition of urs. The trivial separation of an n-fold alternative into urs is 
even logically not uniquely determined. Consider, as a simple example, a 4- 
fold alternative with the four possible answers ai (i= 1, 2, 3, 4). It can be 
separated into 2-fold alternatives by combining two out of three different 
choices: 

bj: i = l o r 2 ;  b2: i = 3 o r 4  

c~: i=1 o r3 ;  c2: i = 2 o r 4  

dl: i = l o r 4 ;  d2: i = 2 o r 3  

(1) 

Then, e.g., a2 can be described by bic2, by b~d2, or by c2d2. In the correspond- 
ing vector space I"4 = 112| 112 this choice is even continuously infinite. In a 
V2 the original defining alternative A2 can be rotated into any direction; the 
spin is the simple example. Hence we may describe all larger vector spaces 
by a continuum of possible definitions of the basic urs. We call this the 
"relativity of urs." 

Now consider a Hilbert space with a given Hamiltonian H, transforming 
all vectors by e -ira. Then we select an arbitrary time-dependent redefinition 
of vectors and hence urs by dm. It transforms the Hilbert space on a motion- 
less one, and hence provides the measurement of transforming any dynamics 
in Hilbert space into any other. Trivially this will provide us with an 
extremely wild transformation of the topologies of the respective states. Then 
we select the "physical interpretation" by using a given semantics of the 
Hilbert space in concrete quantum theory, choosing that topology and hence 
dynamics which corresponds to our intuitive description of the position 
space. 

In doing this we experience good luck. Defining urs in the simplest 
possible manner, that is, by assuming that in a transformation every ur is 
transformed by the same element of a given U(2), we can deduce precisely 
the Poincar6 group of ordinary special relativity, thus reconstructing the 
"intuitive" Minkowski space. We describe this in the manner introduced by 
Castell (1975), also described in v. Weis~icker (1985), p. 407. 

The permissible transformations of an ur are U(2) and complex conju- 
gation. Castell chooses to represent complex conjugation by a linear trans- 
formation in a four-dimensional pseudo-Euclidean space V4. This amounts 
to permitting the binary alternative of being an "ur" or an "anti-ur." The 
permissible transformations in this II4 are SU(2, 2), which is locally iso- 
morphic to S0(4, 2), the conformal group of special relativity. In the Fock 
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space of the urs we can then build representations of SO(4, 2) and hence 
of its subgroup, the Poincar~ group. According to Wigner, its irreducible 
representations are particles. Thus the ur theory has the existence of particles 
as a necessary consequence. 

Let it be clear, at this point, that the ur is by no means a "minute 
particle." Being one bit of information, a single ur, considered as a decision 
in, say, a finite universe, cannot distinguish more than one decision, say "up 
or down." Thus the single ur would be omnipresent in the universe. We 
would need roughly 104o urs for locating an event within a distance of 
10 -12 cm on a line going through 1028 cm, as a plausible radius of a universe. 
G6rnitz (1986, 1988) has shown that the information content of a nucleon, 
expressed in urs, corresponds exactly to the maximal entropy gain of a black 
hole by a nucleon falling into it, according to Bekenstein (1973) and Hawk- 
ing (1975). In the ensuing sections the group representations are generated 
by bilinear combinations of production and annihilation operators of urs in 
their four states ( r=  1, 2 representing an ur, r = 3, 4 representing an anti-ur) 
ar t and at. 

We first assume the urs to have Bose statistics, i.e., the at, a~ to have 
the canonical commutation relations 

[at, at] = Sr~, [ar, as] = [at t, at] = 0 (2) 

We define the number operator 
1 

Vr = r~r-- ~p (3) 

where we can use the following abbreviations: 
1 

rs r  = ~ { a r ,  at} 
a t - •  t at} (4) s r - - 2 l  r ,  

I 
Ol.sr = 2 { a r ,  as} 

and an operator s as half the difference between the numbers of urs and 
anti-urs, 

1 
S = ~ ( n l  + n 2 - - n 3 - - n 4 )  ( 5 )  

Castell has shown that for these "Bose-urs" the Fock space of symmetric 
tensors contains precisely one representation for every value of s, which in 
Minkowski space means one massless particle with helicity s. He and his 
collaborators (Jacob, 1977; Heidenreich, 1981 ; Kiinemund, 1982, 1985) have 
shown that several massive and massless particles can be represented if we 
give the urs para-Bose statistics. Thenp is the para-Bose order. The following 
sections study field and particle representations in this case. The formalism 
used there is the following. 



Quantum Field Theory of Binary Alternatives 1933 

The operators ar, a~ must obey Green's commutation relations 

�89 a~t}, at] = -a, ,a ,  

[{a~, as},a,]= t * [{at, ak}, a~] =0  (6) 

This is achieved by defining Green's decomposition (Green, 1953) 

a ,= E b,", a, t=  b, t" (7) 
a=l  a=l  

with 

Ibm, b~ ~1 = g,s 

[bT, b~] = [b~ ~, b~ ~] = 0 (8) 

{b, ~, b~ p} = {b~, b~} = {b~ ~, b~} =0 for a #fl  

These bilinear operators enable us to construct the generators for the group 
SU(2, 2) which is isomorphic to S0(4, 2). The group S0(4, 2) keeps invari- 
ant the quadratic form (v. Weis~icker, 1985, pp. 404-409) G = ~ + x ~ +  

2 2 2 2 x3-x4 + xs-x6.  The group S0(4, 2) has 15 generators, 7 compact Mu,, 8 
noncompact N;k: 

M I 2 = ~  ( + v I  - v 2 +  v 3 -  v4), 

MI3 = ~  ( - l ' 1 2  + "t'21 + r 4 3 -  T34), 

M23 = ~  ( 'FI ' I2-F ~'21 -F ~'34--F r43), 

M46=~(v+ 2p) 

NI4----~ (+a13  + t~3 -- a24 -- a~4), 

1 
N24 = ~  (-a13--I- all3 -- 8t24 + ~2t4), 

N34 = 2  ( - - a  ~l" a a t ~ 14 - t,e 14 - 23 - 23), 

N56 " ~  (-I-a 14 --I- •14 -- (~23 -- a2t3) 

i (.jr.Ti2 "~- 'r34 _ r43) n l  5 = ~ ~ ' 2 1  - -  

M2s =~ ( + r l 2 -  r21 + r43- r34) 

M35=~ (vl - v2- v3+ v4) 

1 
N,6 =~ (-a,3 + aT3 + a2, -  al,) 

i 
-- Ct 13 -- a24 -- a24) N~6:~ ( - a .  * t 

l 
N3~ = ]  ( + a , , -  aT, + a~3 - a,t3) 

(9) 

The group keeps constant the difference 2s of the number of urs and anti- 
urs. In the Poincar6 group, M~k (i, k =  1, 2, 3) are the components of angular 
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momentum, N;4 (i = 1, 2, 3) generate Lorentz boosts, and the momenta P. 
(p = 0, 1, 2, 3) generating translations are defined by 

Pi=Mis+Ni6 (i= 1, 2, 3) 
(10) 

P0 = M46 k- N45 

In the present paper we give an extensive description of free fields and 
particles. This will be useful in a later work on interaction. 

2. FIELD THEORY 

2.1. Decomposition of Relativistic Quantum Fields into Urs 

We want to describe quantum field theory (QFT) within the framework 
of ur theory. To this aim, we describe how a quantum field (if it exists) may 
be decomposed as a sum over monomials in ur creation and annihilation 
operators al, at ,  i = 1 , . . . ,  4. They fulfill the well-known commutation rela- 
tions (CRs) of a para-Bose algebra (Green, 1953) of orderp [the reason why 
para-Bose statistics is used is described elsewhere (Jacob, 1977; Heidenreich, 
1981; Kiinemund, 1982)] and are represented by linear operators in a Fock 
space ~ , .  An operator A in ~ may then be decomposed as (here and in 
the following we restrict ourselves to the Bose case p = 1) 

a = E c J  'aJ (l 1) 
i,J 

where we use the short-hand notation 

atI_ .,tt~.th_tt3.tI4 M - -  .JI--J2.J3--J4 ( 1 2 )  
- - t ~  1 t~ 2 t~ 3 t~ 4 ~ t4 - - t ~  1 ~ 2 t ~ 3 ~ 4  

I and J are multi-indices. The complex coefficients cls are uniquely deter- 
mined by A. 

If  we assume that it is possible to describe quantum fields by ur theory, 
then the quantum fields q)(x) should have a decomposition of the form (11), 
since r  is an operator in an underlying Hilbert space ~ to be identified 
with ~-d. 

Let us discuss the case of a Hermitian scalar field ~(x),  x = (t, x). For 
every space-time point x a decomposition of the type (11) should be possible, 
where the coefficients will be x-dependent: 

r = E cu(x) at 'd (13) 
1,J 

Since the field is Hermitian, we have the property that Cu(X)= c*t(x). 
Given a relativistic QFT in Minkowski space, there is a unitary represen- 

tation U(A, b) of the Poincar6 group, where A is a Lorentz transformation 
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and b is a translation. Here we only consider the operators U(b)= U(1, b) 
of translations. The transformation properties of a quantum field are 

49(x + b) = U(b)tdP(x) U(b) (14) 

where 

V ( b )  = e -gb~"~ (15) 

and H , ,  p = 0 . . . .  ,3, are the generators of space-time translations. In par- 
ticular, H0 is the Hamilton operator of the theory. The Heisenberg equations 
of motion for ~(x) are 

~u~(x) = i[H,, qb(x)] (16) 

In ur theory, there seems to be a natural choice for the representation of the 
Poincar6 group in the Fock space ~ ,  (Castell, 1975). The operators describ- 
ing translations will then be identified with the Hamilton and momentum 
operators H , .  

The formula (13) for ~(x) is not helpful, since we do not know the x 
dependence of the c~j(x). So we should try to learn something about the 
Poincar6 transformation properties of (13). 

2.2. Urs in the Heisenberg Picture 

Let us apply the transformation (14) to formula (13): 

�9 (x + b) = U(b)*@(x) U(b) = ~ c,g(x) U(b)*a*laJU(b) (17) 
l,J 

We insert a unity 1 = U(b)U(b) ~ between the operators a~ and a;: 
4 4 

qb(x+b)= E c~j(x) ~ (U(b)~a~U(b)) ~k ~ (U(b)tatU(b)) Jt (18) 
l,J k = l  I=1 

This formula motivates the definition of "space-time-dependent urs" 

ai(x) : :  U(x)t al U(x) (19) 

Formula (17) now reads 

dP(x + b) = ~ c,:(x)a(b)tZa(b) J (20) 
LJ  

In particular, we have 

~(x)  = ~ cija(x)*'a(x) J, clj: = cu(O) (21) 
/ ,J  

The space-time dependence of (I) is now shifted from the coefficients Cu(X) 
to the operators ai(x). 
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The a~(x) are nothing but the Heisenberg operators corresponding to 
the operators a~. They satisfy the equation of motion 

Oua~(x ) = i[Hu, a,(x)] (22) 

It turns out that (22) can be solved easily since the commutators of  H ,  from 
v. Weis~icker (1985) and a~ are very simple. First of  all, we introduce opera- 
tors Bi by 

1 
a, = ~ (B, + B4) 

l 
a2 = ~ (BE + Ba) 

1 
a3 = ~ (B2 -- B3) 

1 
a4 =--if_ (B, - B4) 

4z 

(23) 

Since this transformation is a unitary transformation, the CRs of  the B~s are 
the same as those of  the ais. The structure of the formulas is less complicated 
if they are expressed in terms of  the Bt. Setting x = (t, x I, x 2, x3), we obtain 

i iSt2) - ~  x ' (B4-  iSl) + 1 x2(B ~ + ibm) B 2 ( x )  = B 2 -  ~ (t - x a ) ( B 2  - 2 

B3(X) = B 3 - ~  ( t -  xa)(B3 + iBt3)-~ x'(Bl + iB]) + ~ x2(B4 - iBt4) 

i 3 . ,  i i i *  1 B4(x) = S 4 -  ~ (t + x ) (B4-  tB~) - ~ x (B2-  B2) - ~ x2(B3 + iB1) 

(24) 

The translation of  (24) to the operators ai(x) is simple and straightforward. 
The general form of ai(x) is 

a~(x) = ai + xUo~u (25) 

Here v;, is a linear combination of  the operators aj, a t . The dependence of 
the a~(x) on x u is affine. If  we define the light-cone variables x + and x-  by 

x + := t + x a, x -  := t - x 3 (26) 
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we note that B~(x) and B4(x) depend only on (x § x j, x 2) and B2(x) and 
B3(x) depend only on (x-, x I, x2). The same is true for the pairs al(x), a4(x) 
and a2(x), a3(x), respectively. 

The space-time evolution of a quantum field (13) is now given by 
4 4 

r E Cu I-I (atk + x"v~,u) 'k I-I (a,+ xVv,v) s' (27) 
/,d k = l  I = l  

Although the xU-dependence of a~(x) is next to trivial, ~(x) can be 
expressed as a power series in x u with an arbitrarily complicated x u depend- 
ence. However, in general it is very difficult to rearrange the series because 
rip contains annihilation as well as creation operators. Equation (27) shows 
that there could be a possibility to construct interacting quantum fields from 
simple building blocks (urs) with a simple space-time dependence (25). 

The question arises if there is an interpretation of the x dependence of  
the a; despite the fact that urs are not localized in space-time. Up to now, 
we assumed that the operators U(A, b) describe active transformations. We 
suggest that the x dependence of the at comes from the transformation 
properties of the a~ with respect to passive transformations (of the observer). 
This means that urs depend on the frame of reference (or on the state of 
motion of the observer), which is no surprise since urs are bits of informa- 
tion, and a transformation in space and time of an object changes its descrip- 
tion, the bits of information necessary to describe its properties. We could 
say that an ur is not Lorentz- or Poincart-invariant, but it transforms 
covariantly. 

2.3. Vacua in Ur Theory 

In quantum theory and quantum field theory the vacuum vector IO) is 
important because it describes the ground state and contains information 
concerning the symmetries of the theory. Usually, I0) is also the state in the 
Fock space without any particles and quanta. In ur theory, the situation is 
slightly different. The state without any urs will be denoted by tf~) and is 
called the "ur vacuum" or the "logical vacuum." It is annihilated by the a~: 

a,lg)) ---0 (28) 

The Fock space is spanned by the basis vectors 

]tlt2t3t4).--a| a2 a3 a4 1~'-~) (29) 

whose inner products in the para-Bose case can be calculated by a method 
based on polynomials associated with graphs (Graudenz, 1990). 

It turns out that If~) is not annihilated by the Hamilton operator H0, 
and furthermore it is not an eigenvector of H0. Therefore, it is not the 
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ground state of  the theory. This means that the vacuum Ic0) of  the field 
theory is not If~). One can calculate I~o) as follows. We define operators P: 
and Q: by 

B~ = �89 + i)e~ + (1 - i )Qi] 
1 

B2 = ~[(1 - i ) P 2 -  (1 + i)Q2] 
(30) 

B3 = 1[(1 + i ) P 3 +  (l - i)Q3] 

B4 = �89 - i ) P 4 -  (1 + i)Q4] 

If  we require the P: and Qj to be Hermitian, they are uniquely determined 
by Bi . . . . .  B4. Their CRs are 

[V,, Q:] =-it~ij (31) 

We will call them formal coordinate and momentum operators because of 
(31). They have no relation to our space-time. Using these operators, the 
H u are given by 

H o  ~ 

//1= 

//2= 

//3= 

I 2 2 2 2 
2(PI + P 2  + P 3  + P 4 )  

�89 {P1, e3} {e2, e,} 
/{P3,  P4} P2} - � 8 9  

_ +/ ' ,2) 
2 ~,~1 12 

(32) 

In particular, H0 is formally equivalent to the Hamilton operator of four free 
particles in one-dimensional space with momentum operators P1, �9 �9 �9  In 
a coordinate representation, the Schr6dinger wave function of  the ground 
state of these particles is given by 

~eo,(ql . . . . .  q4) = 1 (33) 

where the P; and Qi act as usual as differentiation and multiplication 
operators: 

P Y t r ( q l  . . . . .  q 4 ) = - i  O ~ ( q l , . . . , q 4 ) ,  
cgq~ (34) 

QgW(q, . . . . .  q4) = qiW(q, ,  . . . , q4) 

If~) is (up to a phase) uniquely determined by the condition 

n l ~ ) = O  (35) 

where 
4 

n =  ~ a~ai=H'o (36) 
i~l 
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is the number operator. In the coordinate representation (35) reads 

H6~'n = 0 (3 7) 

where 
H ~ =  ! 2. 2 2 2 t 2 2(P, +P~ +P3 +P2)+~(Q, +Q2+Q2+Q2)-4�89 (38) 

H6 is the Hamilton operator of four uncoupled one-dimensional harmonic 
oscillators, whose ground state is given by 

~Fn(q, . . . . .  q4)=(-~)4exPL-~(q~+q~+q~+~)J - - - - (39) 

Using (33), we obtain 

1 4 1 

Finally we arrive at 

Ico> = (rc'/4)4{exp[�89 + Q~ + Q~ + Q42)l}ln> (41) 

Ico> is annihilated by all Hu, which can be seen from (32)-(34). There- 
fore it is the vacuum of  the field theory, since H0 has lowest eigenvalue 0. 
However, leo> is not normalizable. 

Field-theoretic investigations should be based on the "Lorentz vacuum" 
[co>. This vacuum is not annihilated by the ai, which could be rephrased as, 
"the vacuum of the field theory has a nontrivial logical structure." 

3. PARTICLE STATES 

3.1. Why Para-Bose Statistics for Urs? 

An ur as a decidable binary alternative is defined as a concrete alterna- 
tive having a definite meaning; therefore primarily we have Boltzmann sta- 
tistics for the urs. To allow symmetry relations between them, which are a 
precondition for a definition of particles, the urs must become "more equal." 
So we define instead of different urs only different classes of urs which will 
be distinguished by an upper index. An ur may belong with an equal prob- 
ability also to different classes. 

Para-Bose statistics for the urs results if every ur can belong with equal 
chance to any class. This is described in more detail in G6rnitz (1991). The 
number of different classes is called the order p of para-Bose statistics. The 
commutation relations for para-Bose creation and destruction operators for 
urs are given in (6). With them generators for representations of the Poincar6 
group can be constructed. 
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They are given in v. Weis[icker (1985) for the case of para-Bose statistics 
of order p = 1 (i.e., Bose statistics). For the general case the generators are 
given in (9). The mathematical form of these operators was well known for 
a long time; however, no physical interpretation for them was given in the 
past. By the urs such an interpretation is introduced. 

3.2. The Ur Vacuum and the Particle Vacuum 

The ur vacuum or logical vacuum If~) is defined as the state without 
any ur. For para-Bose creation and destruction operators a~ and at of order 
p the state If~) fulfills 

aklfl) =0  (42) 

and 

aka~lf~) =P6ktlt~>, k, l=  1, 2, 3, 4 (43) 

The ur vacuum is not invariant under the Poincar6 group, e.g., for the 
momentum operators Pk we have 

eklf~> ~ o, k = o, 1, 2, 3 (44) 

The Lorentz vacuum Io~) for particle theory has the meaning that in 
this state no particle is present. This is a much larger amount of information 
than the knowledge "there is no ur." It can be expressed by urs only as an 
infinite sum in their creation operators. The Lorentz vacuum must be invari- 
ant under the Poincar~ group and is defined therefore for any of its genera- 
tors Q by the equations QIw)=0.  They have the solution (41), or, written 
in the operators (4), 

I w ) = E E ( _ l ) . + x i . - x ( g t  T -, * .  tz ~..) a,4a231~) ={exp[i(at2s-a]4)]}lf~) (45) 
g ;t 

The action of the creation and destruction operators of the urs on Iw) is 
given in the Appendix. 

3.3. States for Massless Particles 

First of all we will construct states ~tlw ) for massless particles. We 
define eigenstates of the momentum operators which fulfill the equations 

PkO'tlW ) ----- ipk~ tlto ) (46) 

Note that we use anti-Hermitian Pk with the special choice for pc: 

(Po-ps)  =P~ =P2 = 0, P0 +P3 = 8+ # 0 (47) 

The general case can be obtained by transformations with generators 
of the Poincar~ group. 
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For ~*1o9) we make the ansa tz  

Ctk~ = E E c(#, a )a tg  M~lrg ) 
o" ,u 

Since 

we obtain 

From 

we conclude 

[Po-P3,  a ~ ] = O  and [Po-P~,  at4] =0  

( P o -  e~)Mgatffko>--- 0 

[PI + iP~, a~g] = 0 

[P~ + iP~, at~]l~)  = - p a t ~ - ~ ( i a I ~ -  r ~ ) l ~ )  = 0 

�9 t~  t~ (P~ + tP2)a~ a~4 It_o) - 0  

and from 

(P~ - iP2)at'(= 2o'a ~t~ - I ( i a  it2 --  "t" 13) + a~7(P~ - iP~) 

~tul . . . .  t u -  [ P I - J P 2 ,  t~lal--/~t~14 I(ictt4 - "r 

we get 

�9 t ~  t ~ - -  f o - 1  �9 t (PI - tP2)a , i  a,4 r ,3)atg  + a l g ( P i  - iP2)al~ 

- -  t ~ - I  tu �9 t _ ~ r  t ~ - I  �9 t -2~a,~ a~4(ta~2 rl3)+at~pa~ (~a~-:4~) 
+ c d g a T ' ~ ( e ,  - i e~)  

Therefore 

1941 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

( P, - iP~)a tl ~ M~ lr.o > = 0 (57) 

In addition we have 

(eo + P3 - ie+)atTM~lr.o> 

2 a M T -  i t .  t,. = z~4al4 i(o ) + air (Po + P3 + 2icr - ie+)at~lco > 

=2a l lM ' (a I [ - J l eo>- i2aa tga l~ l~>+(2 ia  -l~+)a~," t -  aMro)  *" 

+2il~a~at'llr.o> + II at/[at~ -~(v~ + v4 +p + p - 1)leo > 

- - l~+a~ a~41~)+pat, 0114-t(p+p _ 1 + 2o')1~> (58)  
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and get the conditions 

-ie+c(p, a) + (p + 1)(p + p + 2cr)c(p + 1, o') = 0 (59) 

resp. 

is+c(p, or) 
c(p + 1, a ) -  (60) 

(U + 1 ) ( p + p  +20") 

and therefore 

c(~, or)= c(0, or) (is+)~'(p + 2or - 1)! 

p!(p+ 2cr-l  +p)! 
(for # =0,  1, 2 . . . .  ) (61) 

In (61) we have no combination of  different values for o-. Therefore in 
(48) the summation over o- can be omitted. 

From 

M,2lO)=~ (n, -n2 + n3-n4)[O)= 2 (62) 

it is obvious that a fixed o" is equivalent to a fixed spin. 
A state of  a massless particle with momentum in the - z  direction and 

helicity is given by 

(ie+)U(p + 1)! a~,att~leo) (63) O~[co) c(O) Y 
7 #!(p + 1 + #)! 

and for the opposite helicity by 

(i~+)'(~ + 1)! a~at~lm> (64) o~[eo) ~C(0) 
7 i l l ( P +  1 + p ) t  

3.4. States for Spinless Particles 

For massive bosons without spin (i.e., nj +n3=n2+n4) we make an 
ansatz 

a p L 

Acting with PI + iP2 on each of the monomials, we obtain 

--/A/utz/3 tz24 u~14 tz23 [uJ/  

a t a - - !  tP tZ +O'(/Z + , ~ , + p +  O'- -  l ) a ~ 3  a24 a14a23[60)  (66) 
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From 

the condition 

(P, + iP2)Otla~) = 0  

(p + 1)(,t.+ l)h(p + 1, A+ 1, o-) 

+ ( a +  1)(p + A.+p+ cr)h(p, A., i f+  1 ) = 0  

follows. Furthermore we have 

(p~ �9 t,r ta  tv t~ 
-- tkP2)a 13 a24 a 14 a231(.0 > 

-- L - - ~ 1 3  tz24 o~14 ~23 

t a  t a - I  v tg - a [ p + Z + p + a - l ) a 2 4 a , ~  aI4a23]le) 

Thus, from 

the same condition results: 

Next, we have 

From 

( P I  + iP2)r = 0 

- ( / t  + 1)(3,+ 1)h(# + 1, ~,+ 1, ty) 

- ( t y +  1)(p + ~ ,+p+  a)h(p,  A, a +  1) = 0  

�9 to  t~  t~ t~ (P4 + e 3 -  im+)a J3 a24 a J4 a231co) 
_ _  �9 to  tcr P t~ tL24 t~14o~23 ) l W /  -- (--lm+al3 a24 a~4a2s + a~al~ - I _ t ~ - , _ t ~ t ~ + h ,  . \  

+p  (p + p - 1 + 20")a~a~a~:~a [~ -'leo ) 

( t '4  + e s  - im+ )r > = o 

we conclude that the condition 

(- im+)h(p,  ,~, or) + ( a +  1)2h(p, )1,- 1, t r+  1) 

+ (p + 1)(p + p  + 2a)h(p  + 1, ,~, tr) = 0  

has to hold�9 From 

lm_)a t3 a24 Ct 14 a231co ) ( P 4 - P 3 - - "  t a  t a t .  tX 

_ �9 to t~ tu tx ~ 2 ~ t o - I ~ t a - I ~ t a + l a t x & \  ----tm-a13a24a14a23[co)--v t,13 i/,24 t.tl4 231 / 

+ 2tr)alaa24alaa23 la~) - Z  (p + $ -  1 t~ ta t .  tz-  l 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 
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and 

( / 4 - / ' 3  - im-)~tlaO = 0 

G~3rnilz et aL 

(76) 

we obtain the condition 

(-im-)h(p, g, o-) -  (cr + 1)2h(tt - 1, A,, o '+ 1) 

-(A,+ 1)(p+ ~,+ 2o')h(p, ~,+ 1, o9 = 0  (77) 

Written in another form, the result is 

-(/~ + 1)(A+ 1)h(p + 1, X+ 1, o-) 

=(o- + 1)(X + p + p  + o-)h(p, A,, a + 1) (78) 

im+h(p, ~. + 1, 09 - (p + 1)(p + p + 2a)h(p + 1, Z + 1, a)  

=(o-+ 1)2h(p, A,, o-+ 1) (79) 

-im_h(p + 1, ~., o') - ( g+  1)(p + ~.+ 2o')h(p + 1, ~.+ 1, 09 

+(o-+ 1)2h(p, •, o '+ 1) (80) 

Combining conditions (79) and (80), we obtain 

im+h(p, ~, + 1, o- ) -  (p + 1)(p + p + 2o-)h(p + 1, ~ + 1, o-) 

= - i m - h ( p + l , g , a ) - ( X + l ) ( p + ~ , + 2 a ) h ( l t + l , g + l , a )  (81) 

and therefore 

im+h(p, ~.+ 1, a) + im_h(p + 1, ;~, a) 

= ( p + p  + Z + 2 e r +  1)(p - Z)h(p + 1, A,+ 1, o-) (82) 

From (78) and (79) after multiplication with ( a + l ) ,  resp. 
(Z+tt  + p +  o-), we get 

- ( a +  1)(p + l ) (Z+ 1)h(p + 1, Z+ 1, o-) 

=(or+ l)2(X+/.t + p +  a)h(p, ;(, a+ 1) (83) 

and 

(2~ + 11 +p + a)[+im+h(p, A. + 1, or ) -  (it + 1)(p + tt + 2a)h(p + 1, g + 1, a)] 

= (o '+  1)2(L+/~ +p+a)h(It, Z, a+ 1) (84) 

i.e., 

(/t + 1)[(Z+p + p +  a)(p+p + 2 o ' ) - ( a +  1)(g+ 1)]h(p + 1, X+ 1, o') 

=($+p +p+ a)im+h(p, $+ 1, a) (85) 
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And from (78) and (80) after multiplication with (o r+ l ) ,  resp. 
(~ + ~ + p  + 0-), we get 

--(0.+ 1)(/J + 1)(A+ l)h(p + 1, ;L+ 1, 0.) 

= (0. + 1)2(;t + p + p  + 0.)h(#, 3,, 0. + 1)(~, + p + p  + 0.) 

x [ - im_h(p  + 1, ~., o r ) -  (A, + 1)(p + 3`+ 2o')h(/z + 1, A, + 1, or)] 

= (0. + 1)2(3` + iz +p + 0.)h(p, 3`, 0. + 1) (86) 

Therefore 

(3`+ 1)[(3`+# + p +  0.)(p + 3`+ 20.) - (0.+ 1)(p + 1)]h(# + 1, 3`1,+ I, 0.) 

= - im_(3 `+p  + p +  0.)h(p + 1, 3`, 0.) (87) 

For  p > 0, A. > 0 and after renaming p ~ g - 1, resp. 3` --* 3`- 1, we get 

h(p + 1, 3`, 0-) - 
im+( )~ + p + p + 0 - -  1)h(p, 3`, 0-) 

(p + 1)(3`+p + p +  0 . -  1)(p + p  + 2 0 . ) - 3 ` ( 0 . +  1) 

for 3`>0 

( - im_)(3 ,+ p + p +  0 . -  1)h(p, )~, 0-) 
h(p, 3` + I, 0 . )=  

(3`+ 1)(3`+ p + p +  o r -  l ) (p  + 3`+ 20.) - p ( 0 .  + 1) 

Because of  
for p > 0  

(88) 

(89) 

[(A,+g + p +  0 . -  1)(p + #  +2o')  - 2 ( 0 . +  1)] 

= [(p + p  + 0. - 1)(p + p + 3, + 2cr)] 

x [ ( ; t + p  + p +  o ' -  1) (p+~,+  2 0 . ) - p ( 0 . +  1)] 

= [(3`+p + 0 . -  1)(p + 3 ` + p  +20-)] (90) 

we obtain for (88) and (89) 

h(p + 1, )~, 0.) = h(p,  3., cr) 

h(p,  ~ +  1, 0 . )=h(p ,  A., 0.) 

-im+()~ + p +p + 0 - -  1) 

(p + 1)(p + p +  0- -  1)(p + p  +3.+20-) 

for ~ > 0  

- im_(3.+ p + p +  0- -  1) 

(,t,+ 1)(~.+p + 0 . -  1 ) (p+ ; t + #  +20-) 

(91) 

for # > 0  
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Another equation results from (79) and (80). We get from (79) after 
multiplication with (~,+ 1)(p + A+ 20") 

(Z+ 1)(p + X+ 20-)(0-+ l)2h(/~, ~., 0-+ 1) 

- (  ~.+ 1)(p + g + 20-)im+h(#, g+ 1, 0-) 

= - ( A +  1)(p+Z+20")(g + 1)(p+/t  +20")h(/a + 1, ~,+ 1, 0-) (92) 

and furthermore from (80) after multiplication with (/~ + 1)(p+/~ +2o-) 

(/1 + 1 ) (p+#  +20-)(o-+ 1)2h(/~, $, 0-+ 1) 

+(/~ + 1)(p +/a + 20-)im_h(la + 1, )~, 0-) 

=- ( I t+l ) (p+l .~+20- ) ( )~+l ) (p+)~+20")h(#+l , ;~+l ,0" )  (93) 

Combining all these results, we obtain 

(,~+ 1)(p +,~,+ 20-)(0- + 1)2h(/t, ,~, 0-+ 1) 

-()~ + 1)(p+ )~+ 20-)im+h(#, 3.+ 1, 0-) 

= (# + 1)(p + p + 20-)(0- + 1)2h(p, A, 0- + 1) 

+(# + 1 ) (p+p  +20")im_h(p + 1, s 0") (94) 

from which we get 

[(3. + 1)(p + X + 2o-) - (/a + 1)(p +/ t  + 20-)](0- + 1)2h(/~, X, 0" + 1) 

= ( Z +  1)(p + )~ + 20")im+h(It, )~ + 1, 0-) 

+(/~ + 1)(p+/~ +20-)ira_h(# + 1, X, 0-) (95) 

By (85), (87) (under the conditions/~ >0  and ~.>0) we have 

[(X+ 1)(p + ;t+ 20-)- (/t + 1)(p + #  +20-)1(0-+ l)2h(/~, Z, 0-+ 1) 

=(,~+ 1)(p+ 3.+ 20-)im+h(lt, $ + 1, 0") 

+(/~ + 1)(p+/a +20")ira_h(! a + 1, A., 0-) 

()~ + 1)(p+ A + 20-)im+(-im_)()~ + # +p+ 0--  1) 
= h(I.t. A, a )  

(s  1)[(A.+/1 +p  + 0"- 1)(p + ~, + 20") - (0" + 1)/1] 

(p + l ) ( p + p  +20")im_(+im+)(A+lt +p+ 0"-  1) 
+h(p, ~., ~r) (96) 

(U + 1)[(A +/~ +p  + 0" - 1)(p + U + 20") - (or + 1)Z] 
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The equation is nontrivial for/2, # p ;  therefore, 

( s  +/2,+2o-+ I)(0.+ 1)2h(p, s 0.+ 1) 

= h(u, z, 0-) m+m-(~.+ la + p +  0 . -  1) 
( s  +p  + 0- - l)(p + ~+ 20-) - (0- + l)p 

- (p+A,+ 20.)(0.+ 1)~+ (p+p  +20-)(0-+ 1)p 
x (97) 

(A,+p + p +  0--  1)(p + p  +20-) - ( 0 - +  1),~ 

and so 

( -m+m_)[( .~+p + p +  0- -  1 ) ( p + X + p  +20- ) -  (0.+ 1)p] 
h(p, A., 0.+ 1)= 

( s  + p +  0 . -  1 ) ( p + s  20.)(0.+ 1 ) (p+p  +/2,+20-+ 1) 

h(~, ~, 0.) 
x (98) 

(A,+p + p +  0 . -  1 ) (p+p  + 2 0 . ) - ( 0 . +  1)~ 

under the conditions p >0, A.>0, p ~,L 
Because of 

[(~ +/.t + p +  0--  1)(p + ~ + 2o-)-  (0-+ 1)#] 

x [ ( s  + p +  0 . -  1 ) (p+p  +20-) - (0.+ 1)A.] 

= [(Z+p+ 0. -  1)(p + ~,+ p +2o")1[(/1 + p +  0--  1)(p+ s  +2o')1 (99) 

we get 

h(~, ;t, 0- + 1) - 
( -m+m_) (  s + p + p + 0- -  1)(p+ L + p  +20-) 

( p + p  + ~ + 2 0 . +  1)(0.+ 1 ) ( s  0 . -  1 ) ( p + s  +20.) 

h(#, ~, 0.) 
x (100) 

(p +p  + or-  1)(p+ s  +20-) 

A recursive expression for the coefficients in the representation series for the 
operator ~* is therefore 

hot + 1, ~, 0-) = h(p, ~, 0.) 
bn+()~+p + p +  0 . -  1) 

(p + 1)(p + p +  0. - 1)(p + p  + ~+ 20.) 

for /1,>0 (101) 

h(p, ~ + 1, 0-) = hot,  X, 0-) 
(-im_)(,~ + p + p +  0- -  I) 

(/2,+ 1 ) (~+p+ 0 . -  1)(p+~,+p +20-) 

for p >0  (102) 
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h(p, A,, or+ 1)= ( - m + m _ ) ( s  
( ~ +  1 ) ( s  + cr - 1)(p + p +  o r -  1) 

h(~, 4, cr) 
x (103) 

( p + ~ + p  + 2 t r ) ( p + p  +,~+ 2tr + 1) 

It remains the case ~, = p.  In (79) we set X ~ A + 1 : 

im+h(p, ~ + 1, or) - (g + 1)(p + # + 2or)h(# + 1, X + 1, o-) 

= (or+ l)2h(p, 4, o-+ I) (104) 

and now let :L=#: 

im+h(p, p + I, o-) - (p + I)(p +/a + 2cr)h(p + I, p + I, or) 

= ( t r+  1)2h(p, p,  or+ 1) (105) 

Analogously ,  we set in (80) /~  -} p + 1 and get 

-im_h(p + 1, 4, t r ) -  (~,+ 1)(p+)~+2cr)h(p + I, 4 +  1, o') 

= ( t r +  l)2h(p, ~,, t r+  1) (106) 

and for p = ~, 

-im_h(p + 1, p,  tr) - (p + 1 ) ( p + p  + 2tr)h(p + 1, p + 1, or) 

= (o" + 1)2h(p,/a, tr + 1) (107) 

It follows that 

im+h(p, p + 1, ~r)= -im_h(p + 1, p, or) (108) 

and with Z = p  in (78) and with (87) we obtain 

h(p + 1, t~ + 1, cr) 

= hot + 1, p, a) 
(-im_)(p + 2p +or) 

(# + 1)(# + p  + o r -  1 ) (p+  2p +2c r+  1) 

for p > 0 and with (85) we arrive at 

ira+(2# + p  + o r -  1) 

(109) 

h(p + 1, p, o) --h(p, p, or) (110) 
(/a + 1)(# + p +  o r -  1)(p + 2/a + 2 o )  
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Therefore 

im+(2p +p + o" - 1)(-im_)(2p +p + o') 
h ( p + l , p  +1, o')= 

(p + 1)(p + p +  o ' -  1)(p+2p +2o-)( u + 1) 

h(~, ~, a) 
x 

(p + p +  o ' -  1)(p + 2p +2o '+ 1) 
(111) 

o r  

h ( ~ ,  ~ ,  o . +  1) = 
(-m_m+)(2p +p+ a -  1) 

(o'+ 1)(p +p + o ' -  1)(p + p +  o ' -  1) 

h(p, p, o.) 
x (112) 

(p+2p  +2o.)(p+ 2p +2o '+ 1) 

In the expansion of the series the first elements are given by direct 
computation from (68), (74), and (77) with the definition h(0, 0, 0) = h and 
h(la, )~, o.) =0 for p <0 or ~ < 0  or o.<0. From (88) and (89) we get for p = 
o'=)1,=0 

h(1, 0, 0) =h(0, 0, 0) - -  

h(0, 1, 0)=h(0, 0, 0) - -  

h(1, I, 0)=h(0, 1, 0) 

h(l, 1, 0)=h(1, 0, 0) 

h(1, 1, 0) =h(0, 0, 0) 

lm+ 

P 

P 

+im+p 
( p -  l ) (p+  1) 

- im_p 
( p -  1)(p + l) 

m + m _  

(p-  1)@ + l) 

-re+m_@ + I) 
h(1, 1, l )=h(1,  1, O)pp(p+2)(p+3 ) 

-m+m_m+m_ 
=h(0, 0, 0) (113) 

(p - 1)pp(p + 2)(p + 3) 

Herewith a recursive definition is given for the generator (I)* in (65) acting 
on the Lorentz vacuum for a momentum state of a massive scalar particle. 
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A state in rest is given by m+ = m - =  m. From 

im+(Z + p + o- + p -  1) 

(p + 1)(p + o- + p -  1)(p +/z + ~.+ 2o') 
hot  + l, ~, o-) = h(p, Z, o-) 

we obtain 

h(p + k, X, o-)= hot, X, o)  

o r  

(im+)kpI (Z + p + k -  1 + o- + p -  1)[ 

(114) 

(p +k)! (,~ + p - 1 + a + p -  1)! 

(p - 1 + a + p -  1)[ (p + p  - 1 + ~L+ 2a)! 
x (115) 

(p + k -  1 + o - + p -  1)!(p + k -  1 + X+ 2o-+p)! 

(im+)k(~.+ k - 1 + o- +p-- 1)] 
h(k, )~, o-)= h(O, ~, o-) 

k ! ( $ -  1 + o - + p -  1)! 

( -1  + o - + p -  1)! ( p -  1 +$+2o-) !  
x (116) 

( k -  1 + o- + p  - 1)! ( k -  1 + ~ +  20- +p)! 

We proceed in an analogous way for ~ and o- and get as the final result 

( im+ )U(-im_ ) ;t (-m+m_)'~ ( ~, + i a + cr + p - 2)! 
h(~, Z, o-) = h(O, O, O) 

$! p[ o-! (Z + a + p  - 2)[ (p + o- + p -  2)[ 

1 
x (117) 

( Z + p  +2o- + p -  1)! 

for the coefficient h(p, ~, o-) in the series (65) of  a creation operator of  a 
massive boson with 

s=(nl  + n2-n3-n4)=O (118) 

4. S U M M A R Y  AND CONCLUSIONS 

We conclude that it is possible to describe quantum fields (possibly 
interacting) by ur theory. The key formulas in this description are explicit 
expressions for the dynamics (21) and (25). The ground state of  the field 
theory can be calculated; it turns out to be unique, and it consists of  infinitely 
many bits of information. We have constructed explicitly eigenstates of  the 
energy and momentum operators for a given mass. It turns out that the 
spectrum of the energy and momentum operators is continuous, as should 
be expected, since arbitrary boosts of  the center of  mass of a given system 
allow any possible eigenvalue of  these operators. Ur theory seems to be a 
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promising concept for the description of  quantum 
multiple quantization of  logic. 

fields based 

A. C O M M U T A T I O N  R E L A T I O N S  

A.I.  Application of Ur Generators on the Lorentz Vacuum 

all09) = -iat4[co ) a4107) = -ia~[co ) 

a2lco ) = ia~lco ) a31co ) = ia~lco ) 

al,dco) -- ( - i p  - a ~t4)lco ) az31co) = (ip - at2310~) 
a ~3109 ) = a ~4lco ) 

(a l4  + a~4)lco) = -iplco) 

r,41co) = -ia~llco) 

v2alco ) = -iatl2[09 ) 

r311co ) = -ia~4[co) 

r321c0) = +ia3'31c0) 

r,21co) = +ia~3[co) 

"t431c0 ) = +ia~4[co)  

Vllco ) =  V4lc0 5 = -ictl4[09) 

a241co5 = al31co ) 
(a~3 + a~)lco ) = iplco) 

v,3lco) = +ia~21co) 

"['2310) > = ictt921(O ) 

r4dCo) = --iat4,]o9) 

v421co) = +ia3*4lco) 

r =l lo~ ) = - i a  ~nlco ) 

z'341co) = - ia~3lw)  

v21co ) = v3[co ) = ia~31co ) 

A.2. Commutation Relations between Momentum Operators and 
Ur Generators 

[P, + iP2, a~] = 0 

[el + iP2, al] = - i a 2 - a ~  

[Pi + iP2, a~] = ia~ + a4 

[Pl + iP2, a2] = 0 

[Pl + iP2, a]] = 0 

[ej + iP2, a3] = ia4 -  aT 

[Pl + iP2, a]] = - ia]  + a2 

[Pi + iP2, a4] = 0 

[PI + iP2, a~l] = 0 

[Pl + iP2, all] = 2(--ia12-- v31) 

1951 

on the 

(A1) 

(A2) 

(A3) 
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[P, + iP2, a~2] = iat ,  + r14 

[PI + iP2, al2] = - i a 2 2 -  r32 

[P, + iP2, at3] = 0 

[PI + iP2, a13] = - ia23 + ia 14- vl - v3 - p  

[Pt + iP2, at4] = - i a t 3  + Z,z 

[PI + iP2, a14] = - i a 2 4 -  Z'34 

[Pl + iP2, a~2] = +2(ia12 + r24) 

[PI + iP2, a22] = 0 

[e~ + ie2, a~3] = +ia~3+ r34 

[PI + iP2, tt23] = + i c t 2 4 -  "t'12 

[PI + iP2, ct~4] = +iota4-iat23 + v2 + v4 +p  

[PI + iP2, a 24] = 0 

[e~ + iP2, vl] = - i r l 2 -  at13 

[Pi + iP2, v2] = + i r 1 2 +  tt24 

[P! + iP2, I,'3] = q- iT34-  aI3  

[P1 + iP2, !/4] = --iz'34 + a24 

[PI + iP2, rlz] = 0  

[Pl + iP2, z21] = +i( vl - v2) + a l 4 -  ctt23 

[P1 + ie2, "t'4a] = + i ( v 4 -  I,'3) + a 2 3  - -  a ~ 4  

[e l  + iP2, '['34] = 0 

[PI - iP2, atl] = +ia[ - a3 

[Pi - iP2, al] = 0 

[ e ,  - i e~ ,  a*~] = 0 

[P, - ie2, a2] = -ia~ +at4 

[ PI - iP2, at3] = -iat4 - aj 

[Pi -- iP2, a3] = 0 

[P, - iP2, at4] = 0 

[Pl -- ie2, a4] = +ia3 + at2 

(A4)  
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[PI - iP2, a~l] = + 2 ( + i a ~ 2 -  zj3) 

[ P I - i P 2 ,  a l l ]  = 0  

[Pt - iP2, a12] = + i a ~ 2 -  r23 

[ P i - i P 2 ,  ttl2] = - i a N  + r41 

[e~ - ie2 ,  a~3] = +ia~3 - i a ~ 4 -  vj - v3 - p  

[ P j - i e 2 ,  aj3] = 0  

[Pt - ie2 ,  alt4] = + i a ~ 4 -  r 4  3 

[ P ~ - i P 2 ,  a14]  = + i~ t13  "F Z'21 

[el  - iP2 , at22] = 0 

[Pl - iP2, a22] = + 2 ( - i a l 2  + z42) 

[e, - ie2, a13] = - i a h -  r2, 

[Pt - iP2, aza] -- - ia13  + 1"43 

[ej - iP2, a h ]  = 0 

[ P I  - iP2, a24]  --- - i a  14 + ia23 + v2 + v4 + p 

[ P l - i P 2 ,  v d =  + i r 2 1 - a 1 3  

[Pl -- iP2, v2] = - i r 2 j  + a2t4 

[PI - iP2, v3] = - i r43  - a13 

[P~ - iP2, V4] = +ir43 + ttt94 

[Pl -- iP2, ri2] = + i ( v 2 -  v l )  - a23 + a~4 

[ P I - i e 2 ,  r21] = 0  

[PI - iP2, ~'43] = 0 

[e l  - iF2, "s = - - i (  I" 4 - -  V3) - - / ~  14 "~ a2~3 

[Po + e3 ,  al] = +ia*~ + a4 

[?0 + ?3 ,  al l  = - i a ,  +at4 

[?0 + e3 ,  a~] = 0 

[ / ' o + / ' 3 ,  a2] = 0  

leo + P~, a~*] = o 

[Po + e3 ,  a3] = 0  

1953 

(A5) 
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[eo+ e3, a4 t] = +ia~+al 

[Po + P3, a4] = -ia4 + a~ 

[Po + P3, a~l] = +2(+ia~l + rl4) 

[Po+ e3, ajl] = +2(--iall  + z41) 

[Po + P3, atl2] = +ia~2+ z24 

[Po + P3, a 12] = - i a  12 + r42 

[Po + e3, a]3] = +(iaI~ + r3,) 

[Po + P3, a 13] = + ( - i a  13 + Z'43) 

[eo + e3, ai14] = +2ialt4 + Vm + Y4d-p 

[Po+ P3, al4] = - 2 i a 1 4 +  vl + v4+p 

[Po + P3, at22] = 0 

[Po+ e3, a22] =0  

[Po + P3, at23] = 0 

[Po + e3, a23] = 0 

[Po + e3,  a'24] = +iat24 + r2~ 

[Po + e3 ,  ~24] = -it~24 + "t'12 

[Po+ P3,  Vl] = +a14 + air4 

[Po + e3, v2] = 0 

[Po + P3, V3] = 0 

[Po + P3, 1'4] = "1- o~ 14 + a 1"[4 

[Po+ P3, r12]  ~" +i't'12 + a24 

[Po + P3, r21] = -it21 + a*24 

[Po + P3, "t'43] = + iT43 + O~ 13 

[Po + P3, "r34] = -iz34 + atl3 

[ e o -  P3, al] = 0 

[Po-  e3, all = 0 

[Po-  P3, a~] = +iat2 - a3 

[ P o -  e3 ,  a2] = - i a 2  - at3 

(A6) 
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[Po-  Ps , a~] = + iats - a2 

[Po - / 3 ,  a3] = - ia s  - at9 

[Po-  Ps, a~] = 0 

[Po-Ps, a4] = 0  

[Po-  P3, altl] =0  

[Po-Ps, 

[Po-  P3, 

[po-e~, 

[ P o - - P 3 ,  

[Po-P3,  

[ e o - e ~ ,  

[ e o - e ~ ,  

[ e o - P ~ ,  

[ e o - P ~ ,  

[/90 -- e 3 ,  

[Po - Ps, 

[Po- e~, 

a id  =0  

air2] = +ia~2-  vls 

a j2] = --ial2-- val 

al~] = +( ia l~-  r,~) 

ams] = + ( - i a l s -  r21) 

a~] =0  

r = 0  

a2t2] = +2(iat22 - v23) 

a22] = + 2 ( - i a n -  v32) 

a~3] = +(2ia~3- v2- vs - p )  

Ct23] = + ( - - 2 i a 2 3  - -  v2 - -  v3 - p )  

a2~4] = +iat24- v4s 

[Po-  P3, a24] = - i a 2 4 -  T34 

[Po-  P3, v~]=O 

[/90 - -  P 3 ,  v2] = - a 2 3  - ot~3 

[Po - P 3 ,  v3] = -~ t23  - a2t3 

[Po - e 3 ,  v4] = 0 

[Po-  P3, r12] = - i r 1 2 -  air3 

[Po-  P3, r2j] = +iz21 - at3 

[Po-/93, T43] = --i 't '43 - -  ~t2t4 

[Po --  P 3 ,  T34] = +ivs4 - a24 

[e, + iP2, a~'(] = 0 

[Pt + ie2, a~]  = +paT'S-'(ia*~t + z14) 

1955 

(A7) 
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[P~ + iP2, 

[P~ + iP2, 

[P~ q- iP2, 

[P~ + iP2, 

[PI + iP2 ,  

[P~ + iP2, 

[e~ + ie2, 

[e~ + ie2, 

a,t~l=o 

al~] t . - , .  * = - ~ a ~ 4  ( t a . - r ~ 2 )  

a ~ l  = + 2 ( a ~ - ' ( i a l 2  + r24) 

a ~ ]  * ~ - ' '  * +r34) ---- -I-~t;t 23 ( ta l3  

a24]t# _-- + f l  at204 - ' [ ia~4 --  ia~3 + ( v2 + v4 + p  + fl -- 1)] 

a~4] = +p a~4-~(+ia~3 + z2~) 

a~3] = tPa ~3-I ( -- ia23 + ia 1 4 -  V l -  V3 + ~O-- 1 - -p )  

a~,] = o  

[e l  "[- iP2, a2~3] = +~Ct~at(-ia13 + "r43) 

[P, + iP2, v k] = [v k -  (v l  - 1)k](--irl2 - a~3) 

[e, + iea. v k] = [(v2 + 1) k - vk](+iZ,z + a24) 

[P1 + iP2, v k] = [v k - (v3 - 1 ) k ] ( + i ' t ' 3 4  - -  a ~ 3 )  

[P~ +ie2 ,  v~] = [ ( v 4 +  1) k -  v4k](--ir34 + a24) 

[PI + ie2 ,  zk2]  = 0 

[Pj + iP2, Zk2,] = ikrkl- '(V,  -- v 2 - k  + 1) + [(r21 + 1) k -  zkl]a,4 

- [r~ ,  - (r~, - 1Ylat~ 

[P~ + iP2, r~4] = o 

[P~ + iP2, rk43] = ik r ] ;~ (v4 -  v3 + k -  1) + [(~43 + 1) k -  ~4k3]a23 

--[rk3 -- ( r 4 3 -  1)klan. 

[ e l  + ie2 ,  _ta_tzl - -  +-t/~ - I  t~tg-I tk 14 ~ 2 3 J  - -  t~14 23 

x [/J&aI3 + ~.at4(iaI3 + rs . )  - / 1  a~s(iaI3 - r,2)] 

t t 13 t~24 .1 - -  T P ~ 1 3 t z 2 4  

x [ i a l 4 -  ia~3 + (v2+  v4 + p + f l -  1)] 

[P, - iPz, a*~7] = + 2craT~-~(ial2-  r~3) 

[P~ - iP2. al~] = + p a I ~ - ' ( i a ~ 2 -  t2s) 

[ PI - iP2, al~] = +r - '[iat23- i a I . -  ( vl + v3 + p + tp -  1)] 

al4] = +Itat~-~(iat4 - t43) [P1 - iP2, tu 

[P, - iP2, a~]  = 0 

(A8) 
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[P, - i e2 ,  a ~ ]  = -A,a~X3-'(ia~4 + "t'20 

[P, - iP2, a~,] = 0 

[P1 - iP2, a~41 = + p ( - i a 2 4 -  r34)a~4 1 

[P~ - iP2, a?3] = 0 

aE4] - fla24 ~ ( - i a ~ 4  + ia2a + v2 + v 4 - ~ +  1 +p)  [PI - iP2,  13 _ /J- 

[PI -- iP2,  a~3] = - 3 .  (-ia24 + z ,2 )a~3  1 

[Pi - i P 2 ,  v~] = [(vl + 1) k -  v~](+iz21 - az3) 

[P, - iP2, v~] = [v~ -  ( v 2 -  l)kl(--ir2, + a~,,) 

[P! - iP2, v3 k] --- [(v3 + 1) k -  vak](-i't'43 - al3) 

re ,  - iP2,  v~] = [wk4-- (V4-- 1)kl(+i't'43 + at,t) 

[ P , - i P 2 ,  r ~ 2 ] = i k r ~ { ' ( v =  - v , - k +  1) 

+ [ r ~ 2 - ( r , 2 -  l)k]a~,--[(rl2 + 1) k -  r~2]a23 

[P, - iP2, z~,] = 0  

[Pi - iP2, r~]  = ik  z ~  l ( v3 - v4 + k - 1) 

-[(r34 + 1) k -  r~4]a,4 + [r~4- ( r34-  1)k]a~3 

[Pl -- iP2, r~a] = 0 
a t p ~ t z  ~ - -  a t e -  lat,~- t 

[P~- iP2,  t4 23J---- 14 23 

• z a [ ,  - za*,,(ia 4 + + a t , 3 ( i a [ , -   ,3)1 

[ P I - i P 2 ,  13 z 4 j -  ~, 13 54 

x [ i a ~ 3 - i a ] 4 - -  (V! "4- V3 q-p-I-q~-- 1)] (A9) 

[eo + P3, a ~ ]  = + 2 c r a l ' : - ' ( i a ~  + rl ,)  

[Po + P3, ate] = + p a | ~ -  I(ia~2 + r24) 

[ eo+P3 ,  a ~ -  t+- '  �9 t +~pa13 (tal3 + z34) 

[Po + P3, a[~] = + p a ] f - 1 ( 2 i a ~ 4 +  v~ + v4 + p  +12 - 1) 

leo+ 

l e o  "1- P3 ,  ar ~] = 0 

[Po + P3,  a~4] = + f l a ~ [ -  '(ia~4 + z2~) 
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[Po + P3, alU4] = p ( - 2 i a ~ 4 +  v1 dr v 4 + p + p  - 1 ) a ~  1 

= p a ~ 4 1 ( - 2 i a l 4  + vl  + v4 + p - - p  + 1) 

[Po+ P3, a~3] = +q~(-ial3 + r43)aY'3 -1 

[Po + P3, ag4] = f la~zg- ' ( - ia24 + r,2) 

[Po + P3 ,  a~3] = 0  

[Po+ P3, Vl k] = [(v, + I) k -  v~la, ,  + [ v ~ -  (v I - -  l)k]g~4 

[Po+ P3, v~]=O 

[Po + P3, v~] = 0 

[Po + P3, vk4] = [(V4+ l) k -  v ] l a ,4+  [v4k-- (V4 - 1)klal, 

[Po+ P3, "r~2] = + k z ~ f ' i z , 2 +  [('t',2 + 1) k -  r~2]a24 

[Po+ P3, r~l] = - k r ~ l - l i z z l  + [Vzkl -- (r21 - 1)k]at24 

[Po + P3, "t'4k3] = +kVkafliv43 + [(V43 + 1) k -  z'ak3]a 13 

[eo+ e3, r 3k4] = - k v ~ 4 ' i v 3 4  + [r 3k4 - ('t'34 - 1)k]a 1t3 

[ p o + P 3 , ~ t u ~ t ; q _ a _ .  _tu-1 tz �9 I" ~r --~t~4 c t 2 3 ( 2 t a ~ 4 + v ~ + v 4 + p + p - - 1 )  

a~a24]  -- - - ,~3 ~,~ tv,~,,,23 + r + r34) [Po+P3,  t t/~ - -  ..t_~tq~--l.t/3-1f.~tTt~t 

+#aI~(ia~4 + r~,)] 

l e o -  P~, a,*?] = 0 

a12] [ P o - P 3 ,  , :  _ ,p- i  �9 t --  + p a l 2  ( t a l 2 - -  z'13) 

a13]-+~oa13 ( t a l 3 -  r12) [ P o -  P3 ,  "tq, _ tq ' -  1 �9 1" 

[ P o -  P3, aI~] = 0 

[Po - P3, a~2 ~] = +2~at~ - '(ia~2 - z23) 

[Po - P3, a~3 x] = +~,a~3 z- 112ia~3 - (v2 + v3 + p  + ~ - 1)] 

~ 1  = + ~ a ~ - ' ( + i a h -  "~) [ P o - P 3 ,  70 

[ P o -  P3, ~t~4] = 0 

[Po - P3, aT3] = +r - v21)a~3 -l 

[ P o -  P3, ag4] = + f l ( - i a 2 4  - T34)g2f14  - 1  

[ P o -  P3, a}3] = +)~ (-2ia23 - v2 - Vx - p ) a ~ ;  ~ 

[ eo - / '~ ,  v~] = o 

(A10) 
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[ P o -  P3, vll 

[ P o -  P3, vk] 

[Po-- P3, v4 k] 

l e o -  P3, r~2] 

[ P o -  P3, r~l] 

leo - P3, rak4] 

[eo - e3 ,  Z-4~3] 

[ P o -  P3, ~tu~tZ l  tz 14 t/,23J 

[Po- P3 ~*~ *a~ ~13t~24J 

= +[(v2 + 1) ~ -  v~](- a23) + [v~-  (v2-1Y](-a~3) 

= +[(v3 + l) ~ -  v~](-a23) + [v~-  (v~-  0 ~ ] ( - a h )  

= 0  

= --krkl21iz~2 -- [r~2 -- ('t't2 -- 1)k]alt3 

----- +kz'2k/| i't-21 -- [('ff21 -~- l )  k -  z'kl]a 13 

= +kr~4 Iir34 -- [('/'34 + l )  k -- z'k4]0~24 

k - l .  k 
= - k z 4 3  l~43 - [1743 - (T43 - 1)k]a2~4 

--~t'-tx-J[+2iat23-(v2+,~ 14 Iz23 v 3 + p + L - -  1)] 
- -  t ~ - ]  t / ~ - I  t t �9 t - a .  a24 [-r 

+~ah(+iah + ~43)] (All) 
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